Atrophy of the soleus muscle by hindlimb unweighting.
نویسندگان
چکیده
The unweighting model is a unique whole animal model that will permit the future delineation of the mechanism(s) by which gravity maintains contractile mass in postural (slow-twitch) skeletal muscle. Since the origination of the model of rodent hindlimb unweighting almost one decade ago, about half of the 59 refereed articles in which this model was utilized have been published in the Journal of Applied Physiology. Thus the purpose of this review is to provide, for those researchers with an interest in the hindlimb unweighting model, a summation of the data derived from this model to data and hopefully to stimulate research interest in aspects of the model for which data are lacking. The stress response of the animal to hindlimb unweighting is transient, minimal in magnitude, and somewhat variable. After 1 wk of unweighting, the animal exhibits no chronic signs of stress. The atrophy of the soleus muscle, a predominantly slow-twitch muscle, is emphasized because unweighting preferentially affects it compared with other calf muscles, which are mainly fast-twitch muscles. The review considers the following information about the unweighted soleus muscle: electromyogram activity, amount and type of protein lost, capillarization, oxidative capacity, glycolytic enzyme activities, fiber cross section, contractile properties, glucose uptake, sensitivity to insulin, protein synthesis and degradation rates, glucocorticoid receptor numbers, responses of specific mRNAs, and changes in metabolite concentrations.
منابع مشابه
Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats.
This study tested the hypothesis that elevation of heat stress proteins by whole body hyperthermia is associated with a decrease in skeletal muscle atrophy induced by reduced contractile activity (i.e. , hindlimb unweighting). Female adult rats (6 mo old) were assigned to one of four experimental groups (n = 10/group): 1) sedentary control (Con), 2) heat stress (Heat), 3) hindlimb unweighting (...
متن کاملInsulin attenuates atrophy of unweighted soleus muscle by amplified inhibition of protein degradation.
Unweighting atrophy of immature soleus muscle occurs rapidly over the first several days, followed by slower atrophy coinciding with increased sensitivity to insulin of in vitro protein metabolism. This study determined whether this increased sensitivity might account for the diminution of atrophy after 3 days of tall-cast hindlimb suspension. The physiological significance of the increased res...
متن کاملIncreased antioxidant capacity does not attenuate muscle atrophy caused by unweighting.
Previous studies have increased antioxidant capacity in skeletal muscle to attenuate oxidative stress and muscle atrophy during limb immobilization (Appell HJ, Duarte JAR, and Soares JMC. Int J Sports Med 18: 157-160, 1997; Kondo H, Miura M, Nakagaki I, Sasaki S, and Itokawa Y. Am J Physiol Endocrinol Metab 262: E583-E590, 1992). The purpose of this study was to determine the level of oxidative...
متن کاملCiliary neurotrophic factor prevents unweighting-induced functional changes in rat soleus muscle.
The purpose of the present work was to see whether changes in rat soleus characteristics due to 3 wk of hindlimb suspension could be modified by ciliary neurotrophic factor (CNTF) treatment. Throughout the tail suspension period, the cytokine was delivered by means of an osmotic pump (flow rate 16 microg. kg(-1). h(-1)) implanted under the hindlimb skin. In contrast to extensor digitorum longus...
متن کاملRegression of capillary network in atrophied soleus muscle induced by hindlimb unweighting.
Little is known about the mechanisms responsible for the adaptation and changes in the capillary network of hindlimb unweighting (HU)-induced atrophied skeletal muscle, especially the coupling between functional and structural alterations of intercapillary anastomoses and tortuosity of capillaries. We hypothesized that muscle atrophy by HU leads to the apoptotic regression of the capillaries an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 68 1 شماره
صفحات -
تاریخ انتشار 1990